Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
889 words
4 minutes
1.4 映射的乘积与特殊映射

§1.4 映射的乘积与特殊映射#

复合映射的定义与性质#

定义#

φ:EF\varphi : E \rightarrow Fψ:HG\psi : H \rightarrow G 是两个映射,且满足 FHF \subset H,则复合映射 ψφ\psi \circ \varphi 定义为:

ψφ:EG,ψφ(x)=ψ(φ(x))\psi \circ \varphi : E \rightarrow G, \quad \psi \circ \varphi(x) = \psi(\varphi(x))

运算律#

  • 结合律ϑ(ψφ)=(ϑψ)φ\vartheta \circ (\psi \circ \varphi) = (\vartheta \circ \psi) \circ \varphi
  • 无交换律:一般情况下 ψφφψ\psi \circ \varphi \neq \varphi \circ \psi

特殊映射类型#

单射 (Injection)#

定义f:ABf:A \rightarrow B 是单射,如果:

f(x1)=f(x2)    x1=x2,x1,x2Af(x_1) = f(x_2) \implies x_1 = x_2, \quad \forall x_1, x_2 \in A

满射 (Surjection)#

定义f:ABf:A \rightarrow B 是满射,如果:

Rf=B(值域等于目标域)R_f = B \quad (\text{值域等于目标域})

双射 (Bijection)#

定义f:ABf:A \rightarrow B 是双射,如果 ff 既是单射又是满射。


逆映射#

定义#

仅对双射 f:ABf:A \rightarrow B 定义逆映射 f:BAf':B \rightarrow A

f(f(x))=x,xAf'(f(x)) = x, \quad \forall x \in A

基本性质#

命题1:若 f(x)=yf(x) = y,则 x=f(y)x = f'(y)

证明:由逆映射定义直接可得 f(f(x))=xf'(f(x)) = x,因此 f(y)=xf'(y) = x


命题2f(f(y))=y,yBf(f'(y)) = y, \quad \forall y \in B

证明:由定义 f(f(x))=xf'(f(x)) = xxAx \in A。设 f(y)=xf'(y) = x,由 y=f(x)y = f(x)f(f(y))=f(x)=yf(f'(y)) = f(x) = y


命题3ff 可逆     \implies ff' 可逆,且 (f)=f(f')' = f

证明

  • 单射性:设 y1,y2By_1, y_2 \in Bf(y1)=f(y2)f'(y_1) = f'(y_2),则: y1=f(f(y1))=f(f(y2))=y2y_1 = f(f'(y_1)) = f(f'(y_2)) = y_2
  • 满射性:设 xAx \in A,则 x=f(f(x))x = f'(f(x))
  • 逆映射相等:设 xAx \in A,记 y=f(x)y = f(x),则 x=f(y)x = f'(y),所以 f(y)=f(x)f'(y) = f(x),即 (f)=f(f')' = f

命题4ff1=IB,f1f=IAf \circ f^{-1} = I_B, \quad f^{-1} \circ f = I_A

证明

  • yBy \in Bf(f1(y))=y=IB(y)f(f^{-1}(y)) = y = I_B(y)
  • xAx \in Af1(f(x))=x=IA(x)f^{-1}(f(x)) = x = I_A(x)

逆映射的等价刻画#

命题5f:ABf:A \rightarrow B 可逆     \iff 存在 g:BAg:B \rightarrow A 使得:

gf=IAfg=IBg \circ f = I_A \quad \text{且} \quad f \circ g = I_B

此时 g=f1g = f^{-1}

证明: (\Rightarrow)若 ff 可逆,取 g=f1g = f^{-1} 即满足条件。

\Leftarrow)假设存在 gg 满足条件:

  • 单射性:设 x1,x2Ax_1, x_2 \in Af(x1)=f(x2)f(x_1) = f(x_2),则: x1=IA(x1)=g(f(x1))=g(f(x2))=IA(x2)=x2x_1 = I_A(x_1) = g(f(x_1)) = g(f(x_2)) = I_A(x_2) = x_2
  • 满射性yB\forall y \in Bf(g(y))=IB(y)=yf(g(y)) = I_B(y) = y,即 x=g(y)x = g(y) 满足 f(x)=yf(x) = y
  • 唯一性yB\forall y \in Bf(g(y))=IB(y)=yf(g(y)) = I_B(y) = y,所以 g(y)=f1(y)g(y) = f^{-1}(y)

复合映射的逆#

命题6:若 f:ABf:A \rightarrow Bg:BCg:B \rightarrow C 都可逆,则:

(gf)1=f1g1(g \circ f)^{-1} = f^{-1} \circ g^{-1}

证明(f1g1)(gf)=f1IBf=IA(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ I_B \circ f = I_A (gf)(f1g1)=gIBg1=IC(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ I_B \circ g^{-1} = I_C


像集与原像集#

定义#

  • 像集f(A)={f(x)xA},AXf(A) = \{f(x) \mid x \in A\}, \quad A \subset X
  • 原像集f1(B)={xXf(x)B},BYf^{-1}(B) = \{x \in X \mid f(x) \in B\}, \quad B \subset Y

单调性#

命题7

  • A1A2XA_1 \subset A_2 \subset X,则 f(A1)f(A2)f(A_1) \subset f(A_2)
  • B1B2YB_1 \subset B_2 \subset Y,则 f1(B1)f1(B2)f^{-1}(B_1) \subset f^{-1}(B_2)

证明

  • yf(A1)y \in f(A_1),则 xA1\exists x \in A_1 使 y=f(x)y = f(x),由于 A1A2A_1 \subset A_2,所以 xA2x \in A_2,故 yf(A2)y \in f(A_2)
  • xf1(B1)x \in f^{-1}(B_1),则 f(x)B1B2f(x) \in B_1 \subset B_2,所以 xf1(B2)x \in f^{-1}(B_2)

幂集与不动点#

幂集#

定义2X={A:AX}2^X = \{A : A \subset X\} 称为 XX 的幂集

单调映射与不动点#

定义F:2X2XF:2^X \rightarrow 2^X 是单调增的,如果:

S1S2X    F(S1)F(S2)S_1 \subset S_2 \subset X \implies F(S_1) \subset F(S_2)

定义AXA \subset XFF 的不动点,如果 F(A)=AF(A) = A


命题8:若 F:2X2XF:2^X \rightarrow 2^X 单调增,则 FF 有不动点

证明: 记 Ω={SX:SF(S)}\Omega = \{S \subset X : S \subset F(S)\},由于 Ω\emptyset \in \Omega,故 Ω\Omega \neq \emptyset

A=SΩSA = \bigcup_{S \in \Omega} S,下证 F(A)=AF(A) = A

  1. sΩs \in \Omega,则 sF(s)F(A)s \in F(s) \subset F(A),所以 AF(A)A \subset F(A)
  2. AF(A)A \subset F(A)F(A)F(F(A))F(A) \subset F(F(A)),所以 F(A)ΩF(A) \subset \Omega
  3. F(A)ΩF(A) \subset \OmegaF(A)AF(A) \subset A

综上,F(A)=AF(A) = A


重要变换简介#

Galileo 变换#

  • 公式ξ=xvt,τ=t\xi = x - vt, \quad \tau = t
  • 性质:双射,(Gv)1=Gv(G_v)^{-1} = G_{-v}GuGv=Gu+vG_u \circ G_v = G_{u+v}

Lorentz 变换#

  • 公式ξ=xvt1(v/c)2,τ=t(v/c2)x1(v/c)2\xi = \frac{x - vt}{\sqrt{1-(v/c)^2}}, \quad \tau = \frac{t-(v/c^2)x}{\sqrt{1-(v/c)^2}}
  • 性质:双射,Lv1=LvL_v^{-1} = L_{-v}LuLv=LwL_u \circ L_v = L_ww=u+v1+(uv)/c2w = \frac{u + v}{1+(uv)/c^2}
1.4 映射的乘积与特殊映射
https://miku.nikonikoni.blog/posts/analysis/1-4-the-product-of-mappings-and-special-mappings/
Author
nikonikoni
Published at
2025-11-24
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00