Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
215 words
1 minute
1.2 概率模型

1.2 概率模型#

基本构成#

  • 样本空间 Ω\Omega:试验的所有可能结果集合
  • 事件:样本空间的子集
  • 概率律 P(A)P(A):为事件 AA 分配一个数,满足:

概率公理#

  1. 非负性P(A)0P(A) \geq 0
  2. 可加性
    • AB=A \cap B = \emptyset,则 P(AB)=P(A)+P(B)P(A \cup B) = P(A) + P(B)
    • 对互不相容序列:P(i=1Ai)=i=1P(Ai)P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)
  3. 归一化P(Ω)=1P(\Omega) = 1

概率律性质#

  • ABA \subset B,则 P(A)P(B)P(A) \leq P(B)
  • P(AB)=P(A)+P(B)P(AB)P(A \cup B) = P(A) + P(B) - P(A \cap B)
  • P(AB)P(A)+P(B)P(A \cup B) \leq P(A) + P(B)
  • P(ABC)=P(A)+P(AcB)+P(AcBcC)P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)
  • 一般形式:P(i=1nAi)i=1nP(Ai)P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)

离散概率模型#

  • 离散概率律P(A)=siAP(si)P(A) = \sum_{s_i \in A} P(s_i)
  • 离散均匀概率律(古典概型)P(A)=事件A中结果数nP(A) = \frac{\text{事件}A\text{中结果数}}{n}

连续概率模型#

  • 样本空间为连续集合
  • 概率律通过度量(长度、面积)定义
1.2 概率模型
https://miku.nikonikoni.blog/posts/propability_theory/1-2-statistical-model/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00