Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
282 words
1 minute
2.4 期望、均值和方差

2.4 期望、均值和方差#

期望的定义与解释#

  • 定义E[X]=xxpX(x)E[X] = \sum\limits_{x} xp_X(x)
  • 物理解释:质量分布的重心
  • 频率解释:大量重复试验的平均值

期望的存在性#

  • xxpX(x)<\sum\limits_{x} |x|p_X(x) < \infty时,期望有确切定义
  • 本书默认所涉随机变量的期望都有定义

方差的定义#

  • 方差var(X)=E[(XE[X])2]\text{var}(X) = E[(X - E[X])^2]
  • 标准差σX=var(X)\sigma_X = \sqrt{\text{var}(X)}

方差的计算方法#

  1. 直接法var(X)=x(xE[X])2pX(x)\text{var}(X) = \sum\limits_{x} (x - E[X])^2 p_X(x)
  2. 矩表达法var(X)=E[X2](E[X])2\text{var}(X) = E[X^2] - (E[X])^2

矩的定义#

  • nn阶矩E[Xn]=xxnpX(x)E[X^n] = \sum\limits_{x} x^n p_X(x)
  • 均值就是一阶矩:E[X]E[X]

线性函数的性质#

对于Y=aX+bY = aX + b

  • 期望E[Y]=aE[X]+bE[Y] = aE[X] + b
  • 方差var(Y)=a2var(X)\text{var}(Y) = a^2\text{var}(X)

常见分布的均值和方差#

伯努利分布#

  • E[X]=1p+0(1p)=pE[X] = 1 \cdot p + 0 \cdot (1-p) = p
  • E[X2]=12p+02(1p)=pE[X^2] = 1^2 \cdot p + 0^2 \cdot (1-p) = p
  • var(X)=E[X2](E[X])2=pp2=p(1p)\text{var}(X) = E[X^2] - (E[X])^2 = p - p^2 = p(1-p)

离散均匀分布#

  • 取值范围:a,a+1,,ba, a+1, \cdots, b
  • E[X]=a+b2E[X] = \frac{a+b}{2}
  • var(X)=(ba)(ba+2)12\text{var}(X) = \frac{(b-a)(b-a+2)}{12}

泊松分布#

  • E[X]=λE[X] = \lambda
  • var(X)=λ\text{var}(X) = \lambda

期望运算的注意事项#

  • 一般情况下E[g(X)]g(E[X])E[g(X)] \neq g(E[X])
  • 反例:平均速度的倒数不等于平均时间的倒数
2.4 期望、均值和方差
https://miku.nikonikoni.blog/posts/propability_theory/2-4-expected-value-mean-and-variance/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00