Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
201 words
1 minute
2.6 条件

2.6 条件#

条件分布列的定义#

给定事件的条件分布#

  • pXA(x)=P(X=xA)=P({X=x}A)P(A)p_{X|A}(x) = P(X = x | A) = \dfrac{P(\{X=x\} \cap A)}{P(A)}
  • 满足分布列的性质:xpXA(x)=1\sum\limits_{x} p_{X|A}(x) = 1

给定随机变量的条件分布#

  • pXY(xy)=P(X=xY=y)=pX,Y(x,y)pY(y)p_{X|Y}(x|y) = P(X = x | Y = y) = \dfrac{p_{X,Y}(x,y)}{p_Y(y)}
  • 固定yy时,pXY(xy)p_{X|Y}(x|y)xx的合格分布列

联合分布列的计算#

  • pX,Y(x,y)=pY(y)pXY(xy)p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)
  • pX,Y(x,y)=pX(x)pYX(yx)p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)
  • 类似于第1章中的乘法规则

全概率公式的应用#

  • pX(x)=ypY(y)pXY(xy)p_X(x) = \sum\limits_{y} p_Y(y)p_{X|Y}(x|y)
  • 用于通过条件分布求边缘分布

条件期望#

定义#

  • 给定事件E[XA]=xxpXA(x)E[X|A] = \sum\limits_{x} xp_{X|A}(x)
  • 给定随机变量E[XY=y]=xxpXY(xy)E[X|Y=y] = \sum\limits_{x} xp_{X|Y}(x|y)
  • 随机变量函数E[g(X)A]=xg(x)pXA(x)E[g(X)|A] = \sum\limits_{x} g(x)p_{X|A}(x)

全期望定理#

  1. E[X]=i=1nP(Ai)E[XAi]E[X] = \sum\limits_{i=1}^{n} P(A_i)E[X|A_i]
  2. E[XB]=i=1nP(AiB)E[XAiB]E[X|B] = \sum\limits_{i=1}^{n} P(A_i|B)E[X|A_i \cap B]
  3. E[X]=ypY(y)E[XY=y]E[X] = \sum\limits_{y} p_Y(y)E[X|Y=y]

核心思想:无条件平均可以由条件平均再求平均得到

2.6 条件
https://miku.nikonikoni.blog/posts/propability_theory/2-6-condition/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00