Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
380 words
2 minutes
3.1 连续随机变量和概率密度函数

3.1 连续随机变量和概率密度函数#

基本概念#

连续随机变量#

  • 取值于连续区域的随机变量
  • 概率规律由**概率密度函数(PDF)**描述

概率密度函数(PDF)#

对于随机变量XX,若存在非负函数fXf_X,使得对任意实数轴上的集合BBP(XB)=BfX(x)dxP(X \in B) = \int_B f_X(x) dxXX称为连续随机变量,fXf_X称为其PDF。

PDF的性质#

  1. 非负性fX(x)0f_X(x) \geq 0 对所有xx成立
  2. 归一化条件fX(x)dx=1\int_{-\infty}^{\infty} f_X(x) dx = 1
  3. 区间概率P(aXb)=abfX(x)dxP(a \leq X \leq b) = \int_a^b f_X(x) dx
  4. 单点概率P(X=a)=0P(X = a) = 0
  5. 局部近似:对于小δ>0\delta > 0P([x,x+δ])fX(x)δP([x, x+\delta]) \approx f_X(x) \cdot \delta

期望与方差#

期望定义#

E[X]=xfX(x)dxE[X] = \int_{-\infty}^{\infty} x f_X(x) dx

期望规则#

对于函数g(X)g(X)E[g(X)]=g(x)fX(x)dxE[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx

方差定义#

var(X)=E[(XE[X])2]=(xE[X])2fX(x)dx\text{var}(X) = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx

方差公式#

var(X)=E[X2](E[X])2\text{var}(X) = E[X^2] - (E[X])^2

线性变换#

Y=aX+bY = aX + b,则: E[Y]=aE[X]+b,var(Y)=a2var(X)E[Y] = aE[X] + b, \quad \text{var}(Y) = a^2 \text{var}(X)

特殊分布#

均匀随机变量#

PDF

\begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{其他} \end{cases}$$ **期望推导**: $$E[X] = \int_a^b x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \left[ \frac{1}{2}x^2 \right]_a^b = \frac{a+b}{2}$$ **方差推导**: $$E[X^2] = \int_a^b x^2 \cdot \frac{1}{b-a} dx = \frac{a^2 + ab + b^2}{3}$$ $$\text{var}(X) = E[X^2] - (E[X])^2 = \frac{(b-a)^2}{12}$$ ### 指数随机变量 **PDF**: $$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \text{其他} \end{cases}$$ **期望推导(分部积分)**: $$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$ **方差推导**: $$E[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$ $$\text{var}(X) = E[X^2] - (E[X])^2 = \frac{1}{\lambda^2}$$
3.1 连续随机变量和概率密度函数
https://miku.nikonikoni.blog/posts/propability_theory/3-1-probability-density-function/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00