Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
239 words
1 minute
3.2 分布函数

3.2 分布函数#

分布函数定义#

累积分布函数(CDF)#

对于随机变量XX,其CDF定义为: FX(x)=P(Xx)F_X(x) = P(X \leq x)

  • 离散情况FX(x)=kxpX(k)F_X(x) = \sum_{k \leq x} p_X(k)
  • 连续情况FX(x)=xfX(t)dtF_X(x) = \int_{-\infty}^x f_X(t) dt

CDF的性质#

  1. 单调非减:若xyx \leq y,则FX(x)FX(y)F_X(x) \leq F_X(y)
  2. 极限行为limxFX(x)=0,limxFX(x)=1\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1
  3. 离散随机变量FX(x)F_X(x)为阶梯函数
  4. 连续随机变量FX(x)F_X(x)为连续函数

CDF与PDF的关系#

离散情况(整数值)#

FX(k)=i=kpX(i),pX(k)=FX(k)FX(k1)F_X(k) = \sum_{i=-\infty}^k p_X(i), \quad p_X(k) = F_X(k) - F_X(k-1)

连续情况#

FX(x)=xfX(t)dt,fX(x)=dFXdx(x)(在可微点)F_X(x) = \int_{-\infty}^x f_X(t) dt, \quad f_X(x) = \frac{dF_X}{dx}(x) \quad (\text{在可微点})

几何与指数随机变量的CDF#

几何随机变量(参数pp#

Fgeo(n)=1(1p)n,n=1,2,F_{\text{geo}}(n) = 1 - (1-p)^n, \quad n = 1, 2, \dots

指数随机变量(参数λ\lambda#

\begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$$ ### 两者关系推导 令$\delta = -\frac{\ln(1-p)}{\lambda}$,则$e^{-\lambda \delta} = 1-p$ 在$x = n\delta$处: $$F_{\text{exp}}(n\delta) = 1 - e^{-\lambda n\delta} = 1 - (1-p)^n = F_{\text{geo}}(n)$$

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00