Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
257 words
1 minute
3.3 正态随机变量

3.3 正态随机变量#

正态分布定义#

正态随机变量#

PDFfX(x)=12πσe(xμ)2/(2σ2)f_X(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/(2\sigma^2)} 其中μ\mu为均值,σ>0\sigma > 0为标准差。

标准正态随机变量#

PDFϕ(y)=12πey2/2,CDF为Φ(y)\phi(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, \quad \text{CDF为} \Phi(y)

正态分布的性质#

期望和方差#

E[X]=μ,var(X)=σ2E[X] = \mu, \quad \text{var}(X) = \sigma^2

线性变换#

XN(μ,σ2)X \sim N(\mu, \sigma^2),则Y=aX+bY = aX + b也服从正态分布: E[Y]=aμ+b,var(Y)=a2σ2E[Y] = a\mu + b, \quad \text{var}(Y) = a^2 \sigma^2

标准化#

XN(μ,σ2)X \sim N(\mu, \sigma^2),则: Y=XμσN(0,1)Y = \frac{X - \mu}{\sigma} \sim N(0,1)

重要推导#

归一化条件证明#

需要证明:12πσe(xμ)2/(2σ2)dx=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} dx = 1

证明: 令I=ex2/2dxI = \int_{-\infty}^{\infty} e^{-x^2/2} dx,考虑I2I^2I2=e(x2+y2)/2dxdyI^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy

转换为极坐标:x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, dxdy=rdrdθdx dy = r dr d\theta I2=02π0er2/2rdrdθ=2πI^2 = \int_0^{2\pi} \int_0^{\infty} e^{-r^2/2} r dr d\theta = 2\pi

所以I=2πI = \sqrt{2\pi},归一化条件成立。

方差推导#

var(X)=(xμ)212πσe(xμ)2/(2σ2)dx\text{var}(X) = \int_{-\infty}^{\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} dx

y=xμσy = \frac{x-\mu}{\sigma},则: var(X)=σ22πy2ey2/2dy=σ2\text{var}(X) = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-y^2/2} dy = \sigma^2

概率计算#

使用标准正态分布表#

P(Xx)=Φ(xμσ)P(X \leq x) = \Phi\left( \frac{x - \mu}{\sigma} \right)

负值处理#

Φ(y)=1Φ(y)\Phi(-y) = 1 - \Phi(y)

3.3 正态随机变量
https://miku.nikonikoni.blog/posts/propability_theory/3-3-normal-distribution/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00