Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
253 words
1 minute
3.4 多个随机变量的联合概率密度

3.4 多个随机变量的联合概率密度#

联合连续随机变量#

联合PDF定义#

若存在联合PDF fX,Y(x,y)f_{X,Y}(x,y),使得对任意平面集合BBP((X,Y)B)=BfX,Y(x,y)dxdyP((X,Y) \in B) = \iint_B f_{X,Y}(x,y) dx dy

归一化条件#

fX,Y(x,y)dxdy=1\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1

局部近似#

对于小δ>0\delta > 0P(aXa+δ,cYc+δ)fX,Y(a,c)δ2P(a \leq X \leq a+\delta, c \leq Y \leq c+\delta) \approx f_{X,Y}(a,c) \cdot \delta^2

边缘PDF#

边缘PDF定义#

  • XX的边缘PDF:fX(x)=fX,Y(x,y)dyf_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy
  • YY的边缘PDF:fY(y)=fX,Y(x,y)dxf_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx

推导:从联合概率到边缘概率的积分转换。

联合分布函数#

联合CDF定义#

FX,Y(x,y)=P(Xx,Yy)=xyfX,Y(s,t)dsdtF_{X,Y}(x,y) = P(X \leq x, Y \leq y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(s,t) ds dt

与联合PDF的关系#

fX,Y(x,y)=2FX,Yxy(x,y)(在连续点)f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y) \quad (\text{在连续点})

期望#

函数期望#

对于函数g(X,Y)g(X,Y)E[g(X,Y)]=g(x,y)fX,Y(x,y)dxdyE[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy

线性函数期望#

E[aX+bY+c]=aE[X]+bE[Y]+cE[aX + bY + c] = aE[X] + bE[Y] + c

多个随机变量#

三个随机变量#

联合PDF为fX,Y,Z(x,y,z)f_{X,Y,Z}(x,y,z),边缘PDF通过积分得到。

期望规则推广#

E[g(X,Y,Z)]=g(x,y,z)fX,Y,Z(x,y,z)dxdydzE[g(X,Y,Z)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y,z) f_{X,Y,Z}(x,y,z) dx dy dz

3.4 多个随机变量的联合概率密度
https://miku.nikonikoni.blog/posts/propability_theory/3-4-joint-cumulative-distribution-function/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00