Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
366 words
2 minutes
3.5 条件

3.5 条件#

以事件为条件的随机变量#

条件PDF定义#

给定事件AAP(A)>0P(A) > 0),条件PDF fXAf_{X|A}满足: P(XBA)=BfXA(x)dxP(X \in B | A) = \int_B f_{X|A}(x) dx

特殊情况#

A={XA}A = \{X \in A\},则:

\begin{cases} \frac{f_X(x)}{P(X \in A)}, & x \in A \\ 0, & \text{其他} \end{cases}$$ ### 全概率公式 若$A_1, \dots, A_n$为分割,则: $$f_X(x) = \sum_{i=1}^n P(A_i) f_{X|A_i}(x)$$ ## 一个随机变量对另一个随机变量的条件 ### 条件PDF定义 给定$Y = y$($f_Y(y) > 0$): $$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$ ### 归一化性质 $$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = 1$$ ### 局部解释 对于小$\delta_1, \delta_2 > 0$: $$P(x \leq X \leq x+\delta_1 | Y = y) \approx f_{X|Y}(x|y) \cdot \delta_1$$ ### 乘法规则 $$f_{X,Y}(x,y) = f_Y(y) f_{X|Y}(x|y) = f_X(x) f_{Y|X}(y|x)$$ ## 条件期望 ### 条件期望定义 - 给定事件$A$:$E[X|A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$ - 给定$Y = y$:$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$ ### 期望规则 $$E[g(X)|A] = \int_{-\infty}^{\infty} g(x) f_{X|A}(x) dx$$ $$E[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx$$ ### 全期望定理 **离散情况**: $$E[X] = \sum_{i=1}^n P(A_i) E[X|A_i]$$ **推导**: 由$f_X(x) = \sum_{i=1}^n P(A_i) f_{X|A_i}(x)$,两边乘以$x$并积分得证。 **连续情况**: $$E[X] = \int_{-\infty}^{\infty} E[X|Y=y] f_Y(y) dy$$ **推导**: $$E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X,Y}(x,y) dx dy = \int_{-\infty}^{\infty} E[X|Y=y] f_Y(y) dy$$ ## 独立性 ### 独立性定义 $X$和$Y$独立当且仅当: $$f_{X,Y}(x,y) = f_X(x) f_Y(y) \quad \forall x,y$$ ### 等价条件 - $f_{X|Y}(x|y) = f_X(x)$(对于$f_Y(y) > 0$) - $f_{Y|X}(y|x) = f_Y(y)$(对于$f_X(x) > 0$) ### 独立性性质 1. $E[g(X)h(Y)] = E[g(X)] E[h(Y)]$ 2. $\text{var}(X+Y) = \text{var}(X) + \text{var}(Y)$ ### 多个变量独立 $X, Y, Z$相互独立当且仅当: $$f_{X,Y,Z}(x,y,z) = f_X(x) f_Y(y) f_Z(z) \quad \forall x,y,z$$
3.5 条件
https://miku.nikonikoni.blog/posts/propability_theory/3-5-condition/
Author
nikonikoni
Published at
2025-11-26
License
Unlicensed

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00