Mobile wallpaper 1Mobile wallpaper 2Mobile wallpaper 3Mobile wallpaper 4Mobile wallpaper 5Mobile wallpaper 6
144 words
1 minute
3.6 连续贝叶斯准则

3.6 连续贝叶斯准则#

贝叶斯准则#

连续随机变量的贝叶斯公式#

fXY(xy)=fX(x)fYX(yx)fY(y)=fX(x)fYX(yx)fX(t)fYX(yt)dtf_{X|Y}(x|y) = \frac{f_X(x) f_{Y|X}(y|x)}{f_Y(y)} = \frac{f_X(x) f_{Y|X}(y|x)}{\int_{-\infty}^{\infty} f_X(t) f_{Y|X}(y|t) dt}

推导: 从乘法规则:fX,Y(x,y)=fX(x)fYX(yx)=fY(y)fXY(xy)f_{X,Y}(x,y) = f_X(x) f_{Y|X}(y|x) = f_Y(y) f_{X|Y}(x|y) 因此:fXY(xy)=fX(x)fYX(yx)fY(y)f_{X|Y}(x|y) = \frac{f_X(x) f_{Y|X}(y|x)}{f_Y(y)}

离散未观察变量#

离散随机变量的贝叶斯公式#

对于离散随机变量NN和连续随机变量YYP(N=nY=y)=pN(n)fYN(yn)fY(y)=pN(n)fYN(yn)ipN(i)fYN(yi)P(N=n|Y=y) = \frac{p_N(n) f_{Y|N}(y|n)}{f_Y(y)} = \frac{p_N(n) f_{Y|N}(y|n)}{\sum_i p_N(i) f_{Y|N}(y|i)}

事件的条件概率#

对于事件AAP(AY=y)=P(A)fYA(y)P(A)fYA(y)+P(Ac)fYAc(y)P(A|Y=y) = \frac{P(A) f_{Y|A}(y)}{P(A) f_{Y|A}(y) + P(A^c) f_{Y|A^c}(y)}

基于离散观察值的推断#

反解公式#

fYA(y)=fY(y)P(AY=y)P(A)=fY(y)P(AY=y)fY(t)P(AY=t)dtf_{Y|A}(y) = \frac{f_Y(y) P(A|Y=y)}{P(A)} = \frac{f_Y(y) P(A|Y=y)}{\int_{-\infty}^{\infty} f_Y(t) P(A|Y=t) dt}

Some information may be outdated

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00